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MIMIC-Compatible GaAs and InP Field
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AND HARTWIG W. THIM, SENIOR MEMBER, IEEE

Abstract — An MIMIC-compatible transferred electron oscillator is in-
vestigated which utilizes the frequency-independent negative resistance of
the stationary charge dipole domain that forms in the channel of a
" MESFET. Devices fabricated from GaAs and InP exhibit 56 mW at 29
GHz and 55 mW at 34 GHz, respectively. CW power levels are somewhat
lower (30 mW). These power levels are the highest ever obtained with
lateral transferred electron oscillators and FET oscillators.

I. INTRODUCTION

CONTINUOUS progress during the last few years in
the development of millimeter-wave circuits for com-
munication and radar systems has stimulated the search
for a planar IC-compatible millimeter-wave source for
both local oscillator and VCO applications. The two suc-
cessfully applied approaches are the GaAs FET oscillator
and the planar transferred electron oscillator (TEO).

The intense developments of millimeter-wave FET’s has
resulted in high-performance oscillators capable of produc-
ing 30 mW at 34 GHz with 30 percent efficiency [1] and in
a 115 GHz monolithic GaAs FET oscillator [2], which,
however, produced a drastically reduced output power of
only 0.1 mW. This steep decrease of power cannot be
explained merely by the 1/f* law due to the transit time
limitation that FET’s are subject to. Other effects, such as
short-channel effects [3], current injection into the buffer
layer, or parasitic bipolar effects [4], must be considered in
addition to the difficulty of circuit matching in a three-
terminal device. TEO’s exhibit lower efficiencies but re-
quire simpler loading circuits since they are two-terminal
devices. They are much easier to manufacture because
submicrometer dimensions are not needed. In addition
TEO’s are known for their superior noise performance.
However, since conventional TEO’s are usually operated in
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the traveling domain mode (“Gunn oscillations™) {5] they
also suffer from the transit time (1,/f?) limitation, leading
to a 6 dB per octave decrease of output power.

A method for circumventing the transit time limitation
is to use a planar TEO with an injection limiting cathode
contact of the type first described in 1982 [6]. In this
device the electron injection is controlled by a negatively
biased Schottky gate to the extent that traveling domains
cannot form. Instead, a stationary high-field domain forms
in the gate—drain region which exhibits a frequency-inde-
pendent negative resistance. The injection current of the
device can be continuously adjusted by the Schottky gate
bias voltage, allowing some additional tuning. Computer
simulations described in this paper explain the principal
operation of the device and show the dependence of power
and efficiency on doping level, device length, and operat-
ing frequency. Maximum efficiencies obtainable with GaAs
devices are of the order of 9 percent at frequencies be-
tween 30 and 50 GHz. Experimental efficiencies measured
between 30 and 37 GHz are somewhat lower (5 percent)
but confirm the absence of the transit time limitation at
Ka-band frequencies.

II. DEVICE STRUCTURE

A cross-sectional view of a typical device is shown in
Fig. 1. It is similar to a normal MESFET having an
extended gate—drain region and an integrated gate-source
capacitance. MOCVD-grown n-type GaAs and InP layers
have been used. The InP n layer is covered with a thin
(100 A) undoped layer in order to obtain a good Schottky
barrier. The active layer doping concentrations have been
chosen between 2-10 cm™3 and 6-10' cm ™3 for GaAs
and 3-10* cm™? for InP. All devices consist of an ohmic
source contact (Ni-Au-Ge), a Schottky anode contact
(Ti-Au), and an overlapping Schottky gate contact sepa-
rated from the source by a 5000-A-thick chemical vapor
deposited SiO, layer. The device width is 400 pm. Both the
length of the Schottky gate and the distance between gate
and source have been chosen to be 0.5 um. The length of
the active region (between gate and anode contact) was
varied from 2.3 to 5 pm. The thickness of the semi-insulat-
ing substrate is 100 pm.
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Cross-sectional view of (a) GaAs and (b) InP devices.

II1. DEVICE ANALYSIS AND SIMULATION .

It is well known that in a normal MESFET a stationar)
high-field domain forms in the gate—drain region. The
formation of traveling Gunn domains is prevented when
the electron injection through the gate is reduced to about
50 percent of the peak current level [7]. Under this condi-
tion, a negative differential resistance occurs in - the

gate—drain region due to the transferred electron (“Gunn™)

effect.

For better understanding of the whole process, a one-
dimensional computer simulation has been performed by
solving Poisson’s equation, the continuity equation, and
the integral current relation. The electron velocity v( E) is
calculated using the analytical expression [3].

RE + v, (E/E,)*
1+(E/E,)*

o(E)= (1)

According to this equation the velocity is an instantaneous
function of local field, thus neglecting delays caused by
intervalley scattering and energy relaxation. Hence the
results of this analysis are valid only for frequencies up to
approximately 60 GHz and for device lengths greater than
1 pm. The structure used in the simulation is shown in Fig.
2. The injection limiting cathode contact represents the
one-dimensional equivalent of the gate—source region of a
real device. The current I injected into the first (left) cell
of the device was kept constant in order to properly
simulate the saturation current of a MESFET. One-dimen-
sional doping fluctuations as well as a higher doping
region at the cathode contact have also been incorporated,
as they are known to act as nucleation centers for dipole
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Fig. 2. Simulated device structure and circuit.

TABLE I

15 I 1
110 -510 cm
25 pm; 5 pm; 10 pm
45V -20V
40V -18V
25 GHz - 60 GHz

average doping level |
device length !
DC-voltage f
amplitude of AC-voltage \
freguency %

L

domains in devices with an overcritical N,-L product. The
simulation parameters are summarized in Table 1.

Fig. 3 shows a sequence of field and carrier distributions
of a 5-pm-long device calculated at different instants of
time and .the accompanying voltage and current wave-
forms. The frequency of operation is 35 GHz, and the dc
voltage is 4.5 V; the amplitude of the ac voltage is 3.5V,
allowing a voltage swing down to threshold. As can be
seen from Fig. 3 the field is below threshold in a substan-
tial part of the device. This region thus acts as a positive
resistance, thereby contributing to loss. It also causes an
upper frequency limit (RC limitation). In order to mini-
mize the influence of this lossy region the device length
must be kept short.

Fig. 3 also shows that bunches of electrons traverse the
depletion region, thereby introducing transit time effects.
These effects can enhance efficiency if both the doping
level and the bias voltage are chosen properly. Fig. 4 shows
calculated efficiencies versus frequency for different dop-
ing levels and bias voltages. Higher efficiencies occur at
higher frequencies at higher doping levels and lower bias
voltages, which can be attributed to adjusting the transit
time of the electron bunch close to the oscillation period.

The best calculated efficiencies in the 30-60 GHz range
are about 9 percent for GaAs devices and are somewhat
higher for InP devices when allowing a current injection of
about 58 percent of the peak current. For slightly in-
creased injection current levels the device breaks into
traveling domain (Gunn) oscillations at the gate—drain
transit time frequency.
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Fig. 3. (a) Calculated carrier concentration. (b) Field distribution. (Continued)
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Fig. 5. Microstrip layout.

IV. EXPERIMENTAL RESULTS

Both GaAs and InP devices have been tested in mi-
crostrip circuits fabricated on 250-pm-thick Duroid sub-
strate, as shown in Fig. 5. The device is glued onto the
copper heat sink within a rectangular hole cut into the

=
S
e
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=4
=]
a
FREQUENCY [GHz]
Fig. 6. Input and output powers versus frequency of a FECTED reflec-

tion-type amplifier.

Duroid substrate. All three contacts—source, gate, and
drain—have been connected to the microstrip circuit using
gold bonding wires. The two identical stub-terminated
3A/8 long transmission lines provide capacitive
impedances to both source and gate, compensating bond-
ing wire inductances. With this circuit amplification over
almost 10 GHz has been measured with a maximum gain
at 37 GHz. A drain voltage of 7.5 V and a negative gate
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TABLE 11
Drain
. Bias ) e .

Material  pyjse Vos(VH Vs tV2| ICA) {eff. % [P(mW) |ftGHz)

Width
GaAs tys | 70 50 | 015 5.3 36 254
GaAs lus | 61 -79 013 49 .39 37.4
InP lus | 113 -43 | 017 29 35 344
GaAs aps | 67 -$35 1 015 29 295 | 29%
GaAs 60ps § 54 -9.1 0.144 | 38 298 | 373

voltage of —6 V have been applied to this device. Fig. 6 .
shows measured output power versus frequency with an
input power level of approximately 1 mW.

In order to produce free-running oscillations, several
resonance circuits have been tested. The best results have
been achieved with dielectric resonators placed near the
drain contact and by carefully adjusting the gate voltage.
Since the frequency of oscillation is determined not only
by the dielectric resonator alone but also by the device
impedance, the frequency can be shifted by varying the
gate bias voltage. Frequency tuning up to 200 MHz at a
center frequency of 30 GHz and up -to 500 MHz at 37
GHz has been observed.

Table II summarizes the best experimental results. The
highest efficiency of a GaAs device at 28.4 GHz for short
pulse operation was 5.3 percent. At 37 GHz the efficiency

is only a bit smaller, showing the absence of the transit

time limitation. A small decrease of efficiency is observed,
which is attributed to such parasitic impedances as the
drain—gate capacitance.

The efficiencies obtained with InP devices are somewhat
smaller owing to the difficulty of making a good Schottky
gate contact to InP. Nevertheless, the output power level
of InP devices is in the 50 mW range.

In order to prevent burnout, the higher current devices
have been tested with long drain pulses. The output power
levels obtained with long pulses are generally lower due to
the high operating device temperature. This temperature
level is believed to be close to that occurring in CW-oper-
ated devices since the power output remains unchanged
when increasing the duty cycle from 10 to 40 percent.

Fig. 7 shows the spectral characteristics of a free-run-
ning 8 mW CW-operated FECTED oscillator. By a crude
inspection of this characteristic, one can speculate that
FECTED oscillator noise is comparable to conventional
Gunn oscillator noise.

V. CONCLUSIONS

It has been shown that GaAs or InP FECTED oscilla-
tors are attractive candidates for monolithic millimeter-
wave integrated circuits, especially at very high frequencies

" since they are not transit time limited, as conventional
TEQ’s and FET’s are. At 29 GHz and 34 GHz the highest
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Fig. 7. Spectral characteristic of a free-running 8 mW CW-operated
FECTED.

output power levels ever obtained with lateral TEO’s and
FET oscillators and at 37 GHz the highest lateral TEO
output power have been produced. A further increase of
output power should be possible by simply increasing the
device width as this is not a critical dimension with respect
to gate resistance. However, the efficiencies measured at
Ka-band frequencies are significantly lower than FET os-
cillator efficiencies but might become comparable at E-
band and W-band frequencies due to the absence of the
transit time limitation and to the simpler loading circuitry
required by the two-terminal FECTED. However, interval-
ley scattering and energy relaxation times reduce the effec-
tive peak-to-valley ratio at high frequencies, causing an
upper frequency limit that FET oscillators are not subject
to. This frequency limit has not yet been determined.
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